Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress.

نویسندگان

  • D Becker
  • S Hoth
  • P Ache
  • S Wenkel
  • M R G Roelfsema
  • O Meyerhoff
  • W Hartung
  • R Hedrich
چکیده

The phytohormone abscisic acid (ABA) regulates many stress-related processes in plants. In this context ABA mediates the responsiveness of plants to environmental stresses such as drought, cold or salt. In response to water stress, ABA induces stomatal closure by activating Ca2+, K+ and anion channels in guard cells. To understand the signalling pathways that regulate these turgor control elements, we studied the transcriptional control of the K+ release channel gene GORK that is expressed in guard cells, roots and vascular tissue. GORK transcription was up-regulated upon onset of drought, salt stress and cold. The wilting hormone ABA that integrates responses to these stimuli induced GORK expression in seedlings in a time- and concentration-dependent manner and this induction was dependent on extracellular Ca2+. ABA-responsive expression of GORK was impaired in the ABA-insensitive mutants abi1-1 and abi2-1, indicating that these protein phosphatases are regulators of GORK expression. Application of ABA to suspension-cultured cells for 2 min followed by a 4 h chase was sufficient to manifest transcriptional activation of the K+ channel gene. As predicted for a process involved in drought adaptation, only 12-24 h after the release of the stress hormone, GORK mRNA slowly decreased. In contrast to other tissues, GORK expression as well as K+(out) channel activity in guard cells is ABA insensitive, allowing the plant to adjust stomatal movement and water status control separately.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress

Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis.  In the present study...

متن کامل

Clustering of the K+ channel GORK of Arabidopsis parallels its gating by extracellular K+

GORK is the only outward-rectifying Kv-like K(+) channel expressed in guard cells. Its activity is tightly regulated to facilitate K(+) efflux for stomatal closure and is elevated in ABA in parallel with suppression of the activity of the inward-rectifying K(+) channel KAT1. Whereas the population of KAT1 is subject to regulated traffic to and from the plasma membrane, nothing is known about GO...

متن کامل

The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration.

Microscopic pores present in the epidermis of plant aerial organs, called stomata, allow gas exchanges between the inner photosynthetic tissue and the atmosphere. Regulation of stomatal aperture, preventing excess transpirational vapor loss, relies on turgor changes of two highly differentiated epidermal cells surrounding the pore, the guard cells. Increased guard cell turgor due to increased s...

متن کامل

Differential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress

The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...

متن کامل

Reactive Oxygen Species-Dependent Nitric Oxide Production Contributes to Hydrogen-Promoted Stomatal Closure in Arabidopsis.

The signaling role of hydrogen gas (H2) has attracted increasing attention from animals to plants. However, the physiological significance and molecular mechanism of H2 in drought tolerance are still largely unexplored. In this article, we report that abscisic acid (ABA) induced stomatal closure in Arabidopsis (Arabidopsis thaliana) by triggering intracellular signaling events involving H2, rea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FEBS letters

دوره 554 1-2  شماره 

صفحات  -

تاریخ انتشار 2003